Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | 1x 2730x 2255x 8x 3x 26x 10x 10x 1x 9x 19x 19x 1x 18x 10x 10x 1x 9x 9x 7x 76x 76x 76x 73x 2464x 223x 2241x 2241x 119x 119x 2122x 955x 955x 43x 1167x 2x 1165x 1165x 12x 2239x 4x 4x 261x 261x 2239x 492x 7x 3x 2247x 2247x 2247x 6x 2241x 7x 2234x 171x 55x 116x 783x 783x 783x 66x 66x 3x 3x 3x 63x 63x 1x 1x 7x 1x 2x 1x 25x 6x 39x 39x 10x 10x 19x 19x 39x 76x 12x 64x 76x 194x 41x 193x 178x 15x 782x 114x 6x 108x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 5x 67x 4x 261x 261x 261x 261x 261x 261x 261x 261x 76x 76x 76x 76x 76x 48x 13x 1x 12x 12x 35x 28x 7x 2x 5x 1x 4x 4x 76x 152x 152x 152x 10x 152x | import BN from 'bn.js' import {ABISerializableObject} from '../serializer/serializable' import {ABIDecoder} from '../serializer/decoder' import {ABIEncoder} from '../serializer/encoder' import {isInstanceOf, secureRandom} from '../utils' type IntType = Int | number | string | BN interface IntDescriptor { isSigned: boolean byteWidth: number } /** * How to handle integer overflow. * - `throw`: Throws an error if value overflows (or underflows). * - `truncate`: Truncates or extends bit-pattern with sign extension (C++11 behavior). * - `clamp`: Clamps the value within the supported range. */ export type OverflowBehavior = 'throw' | 'truncate' | 'clamp' /** * How to handle remainder when dividing integers. * - `floor`: Round down to nearest integer. * - `round`: Round to nearest integer. * - `ceil`: Round up to nearest integer. */ export type DivisionBehavior = 'floor' | 'round' | 'ceil' /** * Binary integer with the underlying value represented by a BN.js instance. * Follows C++11 standard for arithmetic operators and conversions. * @note This type is optimized for correctness not speed, if you plan to manipulate * integers in a tight loop you're advised to use the underlying BN.js value or * convert to a JavaScript number first. */ export class Int implements ABISerializableObject { static abiName = '__int' static isSigned: boolean static byteWidth: number /** Largest value that can be represented by this integer type. */ static get max() { return new BN(2).pow(new BN(this.byteWidth * 8 - (this.isSigned ? 1 : 0))).isubn(1) } /** Smallest value that can be represented by this integer type. */ static get min() { return this.isSigned ? this.max.ineg().isubn(1) : new BN(0) } /** Add `lhs` to `rhs` and return the resulting value. */ static add(lhs: Int, rhs: Int, overflow: OverflowBehavior = 'truncate'): Int { return Int.operator(lhs, rhs, overflow, (a, b) => a.add(b)) } /** Add `lhs` to `rhs` and return the resulting value. */ static sub(lhs: Int, rhs: Int, overflow?: OverflowBehavior): Int { return Int.operator(lhs, rhs, overflow, (a, b) => a.sub(b)) } /** Multiply `lhs` by `rhs` and return the resulting value. */ static mul(lhs: Int, rhs: Int, overflow?: OverflowBehavior): Int { return Int.operator(lhs, rhs, overflow, (a, b) => a.mul(b)) } /** * Divide `lhs` by `rhs` and return the quotient, dropping the remainder. * @throws When dividing by zero. */ static div(lhs: Int, rhs: Int, overflow?: OverflowBehavior): Int { return Int.operator(lhs, rhs, overflow, (a, b) => { if (b.isZero()) { throw new Error('Division by zero') } return a.div(b) }) } /** * Divide `lhs` by `rhs` and return the quotient + remainder rounded to the closest integer. * @throws When dividing by zero. */ static divRound(lhs: Int, rhs: Int, overflow?: OverflowBehavior): Int { return Int.operator(lhs, rhs, overflow, (a, b) => { if (b.isZero()) { throw new Error('Division by zero') } return a.divRound(b) }) } /** * Divide `lhs` by `rhs` and return the quotient + remainder rounded up to the closest integer. * @throws When dividing by zero. */ static divCeil(lhs: Int, rhs: Int, overflow?: OverflowBehavior): Int { return Int.operator(lhs, rhs, overflow, (a, b) => { if (b.isZero()) { throw new Error('Division by zero') } const dm = (a as any).divmod(b) if (dm.mod.isZero()) return dm.div return dm.div.negative !== 0 ? dm.div.isubn(1) : dm.div.iaddn(1) }) } /** * Can be used to implement custom operator. * @internal */ static operator( lhs: Int, rhs: Int, overflow: OverflowBehavior = 'truncate', fn: (lhs: BN, rhs: BN) => BN ) { const {a, b} = convert(lhs, rhs) const type = a.constructor as typeof Int const result = fn(a.value, b.value) return type.from(result, overflow) } /** * Create a new instance from value. * @param value Value to create new Int instance from, can be a string, number, * little-endian byte array or another Int instance. * @param overflow How to handle integer overflow, default behavior is to throw. */ static from<T extends typeof Int>( this: T, value: IntType | Uint8Array, overflow?: OverflowBehavior ): InstanceType<T> static from(value: any, overflow?: OverflowBehavior): unknown static from(value: IntType | Uint8Array, overflow?: OverflowBehavior): any { if (isInstanceOf(value, this)) { return value } let fromType: IntDescriptor = this let bn: BN if (isInstanceOf(value, Int)) { fromType = value.constructor as typeof Int bn = value.value.clone() } else if (value instanceof Uint8Array) { bn = new BN(value, undefined, 'le') if (fromType.isSigned) { bn = bn.fromTwos(fromType.byteWidth * 8) } } else { if ( (typeof value === 'string' && !/[0-9]+/.test(value)) || (typeof value === 'number' && !Number.isFinite(value)) ) { throw new Error('Invalid number') } bn = BN.isBN(value) ? value.clone() : new BN(value, 10) if (bn.isNeg() && !fromType.isSigned) { fromType = {byteWidth: fromType.byteWidth, isSigned: true} } } switch (overflow) { case 'clamp': bn = clamp(bn, this.min, this.max) break case 'truncate': bn = truncate(bn, fromType, this) break } return new this(bn) } static fromABI<T extends typeof Int>(this: T, decoder: ABIDecoder): InstanceType<T> static fromABI(decoder: ABIDecoder): unknown static fromABI(decoder: ABIDecoder) { return this.from(decoder.readArray(this.byteWidth)) } static abiDefault() { return this.from(0) } static random<T extends typeof Int>(this: T): InstanceType<T> static random(): unknown static random() { return this.from(secureRandom(this.byteWidth)) } /** * The underlying BN.js instance – don't modify this * directly – take a copy first using `.clone()`. */ value: BN /** * Create a new instance, don't use this directly. Use the `.from` factory method instead. * @throws If the value over- or under-flows the integer type. */ constructor(value: BN) { const self = this.constructor as typeof Int Iif (self.isSigned === undefined || self.byteWidth === undefined) { throw new Error('Cannot instantiate abstract class Int') } if (value.gt(self.max)) { throw new Error(`Number ${value} overflows ${self.abiName}`) } if (value.lt(self.min)) { throw new Error(`Number ${value} underflows ${self.abiName}`) } this.value = value } /** * Cast this integer to other type. * @param overflow How to handle overflow, default is to preserve bit-pattern (C++11 behavior). */ cast<T extends typeof Int>(type: T, overflow?: OverflowBehavior): InstanceType<T> cast(type: typeof Int, overflow: OverflowBehavior = 'truncate'): InstanceType<typeof Int> { if (this.constructor === type) { return this } return type.from(this, overflow) } /** Number as bytes in little endian (matches memory layout in C++ contract). */ get byteArray(): Uint8Array { const self = this.constructor as typeof Int const value = self.isSigned ? this.value.toTwos(self.byteWidth * 8) : this.value return value.toArrayLike(Uint8Array as any, 'le', self.byteWidth) } /** * Compare two integers, if strict is set to true the test will only consider integers * of the exact same type. I.e. Int64.from(1).equals(UInt64.from(1)) will return false. */ equals(other: IntType | Uint8Array, strict = false) { const self = this.constructor as typeof Int if (strict === true && isInstanceOf(other, Int)) { const otherType = other.constructor as typeof Int Eif (self.byteWidth !== otherType.byteWidth || self.isSigned !== otherType.isSigned) { return false } } try { return this.value.eq(self.from(other).value) } catch { return false } } /** Mutating add. */ add(num: IntType) { this.value = this.operator(num, Int.add).value } /** Non-mutating add. */ adding(num: IntType) { return this.operator(num, Int.add) } /** Mutating subtract. */ subtract(num: IntType) { this.value = this.operator(num, Int.sub).value } /** Non-mutating subtract. */ subtracting(num: IntType) { return this.operator(num, Int.sub) } /** Mutating multiply. */ multiply(by: IntType) { this.value = this.operator(by, Int.mul).value } /** Non-mutating multiply. */ multiplying(by: IntType) { return this.operator(by, Int.mul) } /** * Mutating divide. * @param behavior How to handle the remainder, default is to floor (round down). * @throws When dividing by zero. */ divide(by: IntType, behavior?: DivisionBehavior) { this.value = this.dividing(by, behavior).value } /** * Non-mutating divide. * @param behavior How to handle the remainder, default is to floor (round down). * @throws When dividing by zero. */ dividing(by: IntType, behavior?: DivisionBehavior) { let op = Int.div switch (behavior) { case 'ceil': op = Int.divCeil break case 'round': op = Int.divRound break } return this.operator(by, op) } /** * Run operator with C++11 implicit conversion. * @internal */ private operator(other: IntType, fn: (lhs: Int, rhs: Int) => Int): this { let rhs: Int if (isInstanceOf(other, Int)) { rhs = other } else { rhs = Int64.from(other, 'truncate') } return fn(this, rhs).cast(this.constructor as typeof Int) as this } /** * Convert to a JavaScript number. * @throws If the number cannot be represented by 53-bits. **/ toNumber() { return this.value.toNumber() } toString() { return this.value.toString() } [Symbol.toPrimitive](type: string) { if (type === 'number') { return this.toNumber() } else { return this.toString() } } toABI(encoder: ABIEncoder) { encoder.writeArray(this.byteArray) } toJSON() { // match FCs behavior and return strings for anything above 32-bit if (this.value.bitLength() > 32) { return this.value.toString() } else { return this.value.toNumber() } } } export type Int8Type = Int8 | IntType export class Int8 extends Int { static abiName = 'int8' static byteWidth = 1 static isSigned = true } export type Int16Type = Int16 | IntType export class Int16 extends Int { static abiName = 'int16' static byteWidth = 2 static isSigned = true } export type Int32Type = Int32 | IntType export class Int32 extends Int { static abiName = 'int32' static byteWidth = 4 static isSigned = true } export type Int64Type = Int64 | IntType export class Int64 extends Int { static abiName = 'int64' static byteWidth = 8 static isSigned = true } export type Int128Type = Int128 | IntType export class Int128 extends Int { static abiName = 'int128' static byteWidth = 16 static isSigned = true } export type UInt8Type = UInt8 | IntType export class UInt8 extends Int { static abiName = 'uint8' static byteWidth = 1 static isSigned = false } export type UInt16Type = UInt16 | IntType export class UInt16 extends Int { static abiName = 'uint16' static byteWidth = 2 static isSigned = false } export type UInt32Type = UInt32 | IntType export class UInt32 extends Int { static abiName = 'uint32' static byteWidth = 4 static isSigned = false } export type UInt64Type = UInt64 | IntType export class UInt64 extends Int { static abiName = 'uint64' static byteWidth = 8 static isSigned = false } export type UInt128Type = UInt128 | IntType export class UInt128 extends Int { static abiName = 'uint128' static byteWidth = 16 static isSigned = false } export type VarIntType = VarInt | IntType export class VarInt extends Int { static abiName = 'varint32' static byteWidth = 32 static isSigned = true static fromABI(decoder: ABIDecoder) { return new this(new BN(decoder.readVarint32())) } toABI(encoder: ABIEncoder) { encoder.writeVarint32(Number(this)) } } export type VarUIntType = VarUInt | IntType export class VarUInt extends Int { static abiName = 'varuint32' static byteWidth = 32 static isSigned = false static fromABI(decoder: ABIDecoder) { return new this(new BN(decoder.readVaruint32())) } toABI(encoder: ABIEncoder) { encoder.writeVaruint32(Number(this)) } } export type AnyInt = | Int8Type | Int16Type | Int32Type | Int64Type | Int128Type | UInt8Type | UInt16Type | UInt32Type | UInt64Type | UInt128Type | VarIntType | VarUIntType /** Clamp number between min and max. */ function clamp(num: BN, min: BN, max: BN) { return BN.min(BN.max(num, min), max) } /** * Create new BN with the same bit pattern as the passed value, * extending or truncating the value’s representation as necessary. */ function truncate(value: BN, from: IntDescriptor, to: IntDescriptor): BN { const fill = value.isNeg() ? 255 : 0 const fromValue = from.isSigned ? value.toTwos(from.byteWidth * 8) : value const fromBytes = fromValue.toArrayLike(Uint8Array as any, 'le') as Uint8Array const toBytes = new Uint8Array(to.byteWidth) toBytes.fill(fill) toBytes.set(fromBytes.slice(0, to.byteWidth)) const toValue = new BN(toBytes, undefined, 'le') return to.isSigned ? toValue.fromTwos(to.byteWidth * 8) : toValue } /** C++11 implicit integer conversions. */ function convert(a: Int, b: Int) { // The integral promotions (4.5) shall be performed on both operands. a = promote(a) b = promote(b) const aType = a.constructor as typeof Int const bType = b.constructor as typeof Int // If both operands have the same type, no further conversion is needed if (aType !== bType) { // Otherwise, if both operands have signed integer types or both have unsigned integer types, // the operand with the type of lesser integer conversion rank shall be converted to the type // of the operand with greater rank. if (aType.isSigned === bType.isSigned) { if (aType.byteWidth > bType.byteWidth) { b = b.cast(aType) } else Eif (bType.byteWidth > aType.byteWidth) { a = a.cast(bType) } } else { // Otherwise, if the operand that has unsigned integer type has rank greater than or equal // to the rank of the type of the other operand, the operand with signed integer type // shall be converted to the type of the operand with unsigned integer type. if (aType.isSigned === false && aType.byteWidth >= bType.byteWidth) { b = b.cast(aType) } else if (bType.isSigned === false && bType.byteWidth >= aType.byteWidth) { a = a.cast(bType) } else { // Otherwise, if the type of the operand with signed integer type can represent all of the // values of the type of the operand with unsigned integer type, the operand with unsigned // integer type shall be converted to the type of the operand with signed integer type. if ( aType.isSigned === true && aType.max.gte(bType.max) && aType.min.lte(bType.min) ) { b = b.cast(aType) } else Eif ( bType.isSigned === true && bType.max.gte(aType.max) && bType.min.lte(aType.min) ) { a = a.cast(bType) } else { // Otherwise, both operands shall be converted to the unsigned integer type // corresponding to the type of the operand with signed integer type. // --- // Dead code: this can't happen™ with the types we have. // --- // const signedType = aType.isSigned ? aType : bType // let unsignedType: typeof Int // switch (signedType.byteWidth) { // case 4: // unsignedType = UInt32 // break // case 8: // unsignedType = UInt64 // break // case 16: // unsignedType = UInt128 // break // default: // throw new Error( // `No corresponding unsigned type for ${signedType.abiName}` // ) // } // a = a.cast(unsignedType) // b = b.cast(unsignedType) } } } } return {a, b} } /** C++11 integral promotion. */ function promote(n: Int) { // An rvalue of type char, signed char, unsigned char, short int, or // unsigned short int can be converted to an rvalue of type int if int // can represent all the values of the source type; otherwise, the source // rvalue can be converted to an rvalue of type unsigned int. let rv = n const type = n.constructor as typeof Int if (type.byteWidth < 4) { rv = n.cast(Int32) } return rv } |